

Neuropsychological Evaluation of ME/CFS

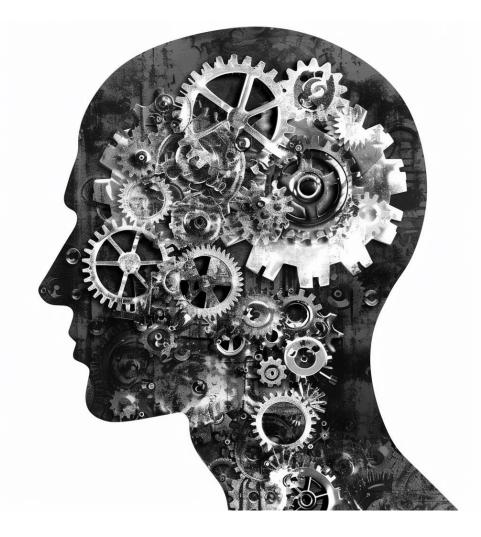
Markus Gole, PhD, PhD Clinical Psychologist, Health Psychologist, Neuropsychologist

Webinar, 03/01/2024

Quick primer as a starter

Neuropsychology is the branch of science that studies the physiological processes of the nervous system and relates them to behavior and cognition, in terms both of their normal function and of the dysfunctional processes associated with brain damage.

E.g.: intelligence, memory, attention, concentration, information processing, motor skills, executive functioning, language

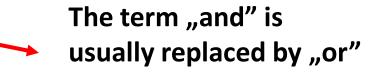


Impaired cognition required for diagnosis?

IOM diagnostic criteria:

- *Either* cognitive impairment *or* orthostatic intolerance must be reported.
- Cognitive impairments are thus additional manifestations that might be present, but don't have to be present (thinking, memory, executive function, information processing).
- If they are present, the following frequency/intensity requirements must hold:
 - At least half of the time
 - At least with moderate intensity

Required? Not necessarily!



Impaired cognition required for diagnosis?

Canadian Consensus Criteria (CCC):

- ≥ 2 neurological/cognitive manifestations must be present:
 - Impairment of concentration and short-term memory; information processing, categorizing and word retrieval
 - Perceptual/sensory disturbances (open category; e.g., inability to focus vision)
 - Confusion
 - Disorientation
 - Motor disturbances (e.g., ataxia)
 - Overload phenomena (open category; e.g., hypersensitivity to noise)

Required? Not necessarily!

Frequency/intensity requirements are usually added

Research on the diagnostic criteria

Using the DePaul Symptom Questionaire (54 items), a factor analytic study by Conroy et al. (2023) showed **support** for both diagnostic systems: **IOM and CCC.**

Of note:

- An independent factor *"*cognitive dysfunction" emerged.
- They recommended including cognitive impairment as a mandatory criterion for IOM classification.
- About 92% reported pronounced cognitive impairment meeting the IOM threshold.
- About 96% who reported orthostatic intolerance also reported cognitive impairment.

Required? Empirically speaking: Yes!

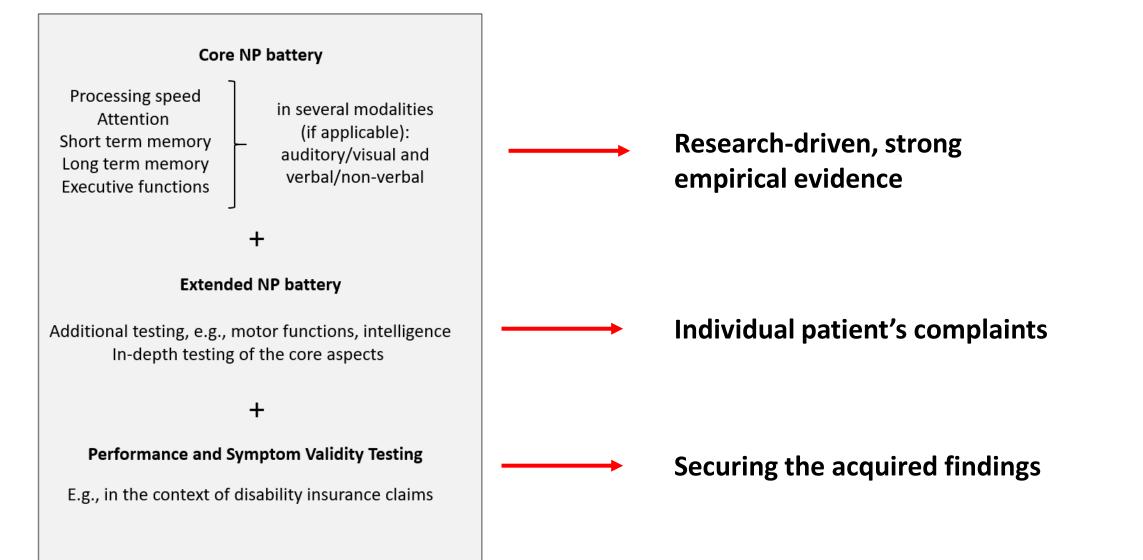
Meta-analysis on impaired cognition and ME/CFS

Sebaiti et al. (2022) analyzed 33 studies (n = 1 086 patients/968 matched controls). Robust impairments (at least moderate effect size) were found in:

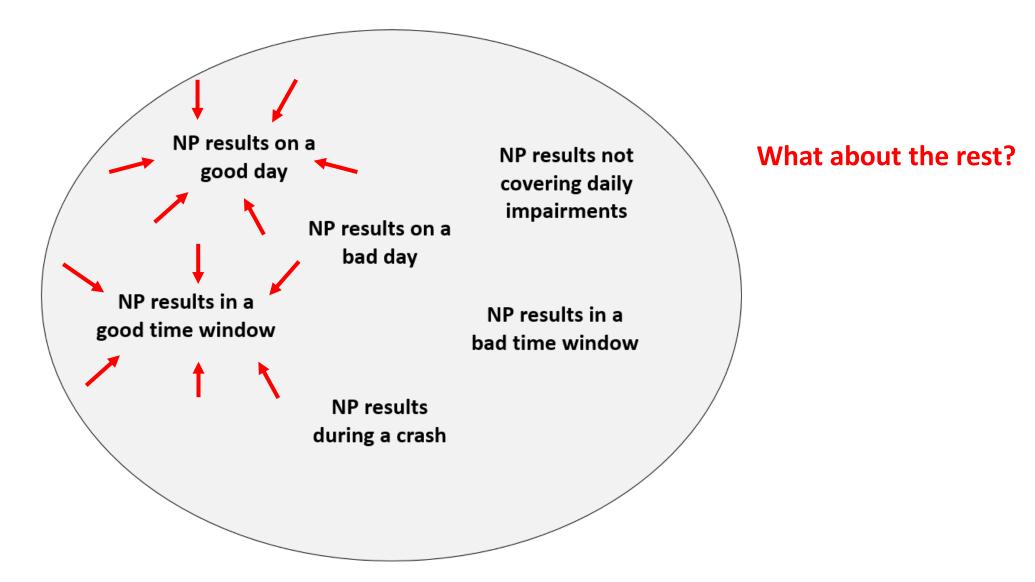
- Processing speed (g between -0.59 and -0.82; e.g., WAIS symbol)
- Attention (g between -0.50 and -0.75; e.g., PASAT and CPT for selective/sustained attention)
- **Short term memory** (g = -0.55, Spatial Span Forward)
- Long term memory (g between -0.50 and -0.67; e.g., CLT, ROCF)
- **Executive functions** (g = -0.51, Stroop Test)

Is impaired cognition typical? Empirically speaking: Yes!

Please read the following words as fast as possible



Now, please name the color the word is written in as fast as possible



How NP testing might look like

Why NP testing alone is not enough

What is still needed

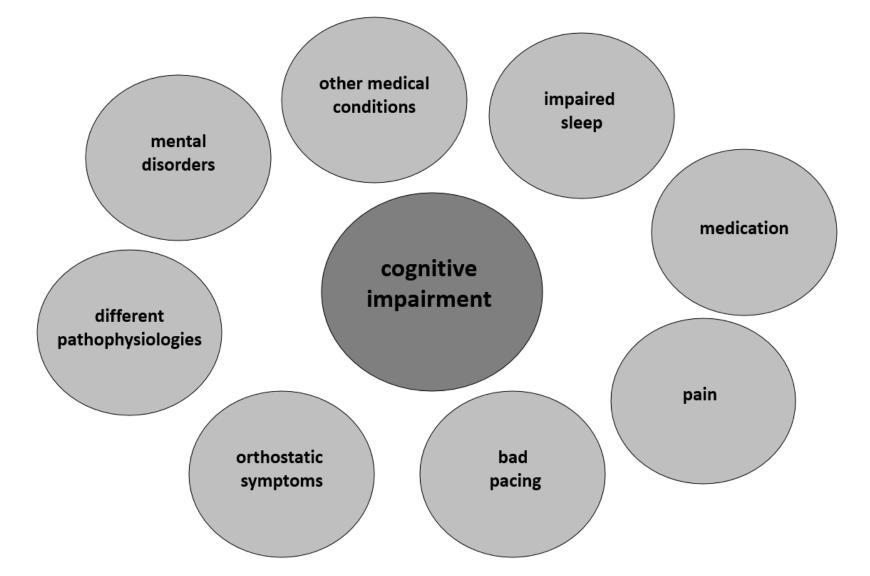
The following steps help to avoid "false negatives" as good as possible:

Do a thorough patient history, view medical/psychological records, do a mental state examination, cover bad days Interview

Follow-up phone call after NP testing, explore cognitive/mental post exertional malaise (PEM)

NP meets Clinical Psychology (CP)

Explain the observed impairments:


- There is no "cognitive marker" for ME/CFS due to a lack of specificity.
- Several mental disorders share similar impairments, such as
 - \circ Depression
 - Anxiety Disorders
 - \circ OCD
 - \circ ADHD
 - o Schizophrenia

Consider self-report questionnaires for these variables!

Explaining cognitive impairments

Potential contributers and potential treatment options

Spotlight: neurobiological basis (1/2)

Meta-analysis of Lee et al. (2024) with more than 1 500 ME/CFS patients (65 invididual studies):

- Reduced global brain activity (e.g., EEG, fMRI).
- Reduced activity in the **insular cortex** implicated in **attention** (see also Li et al., 2021).

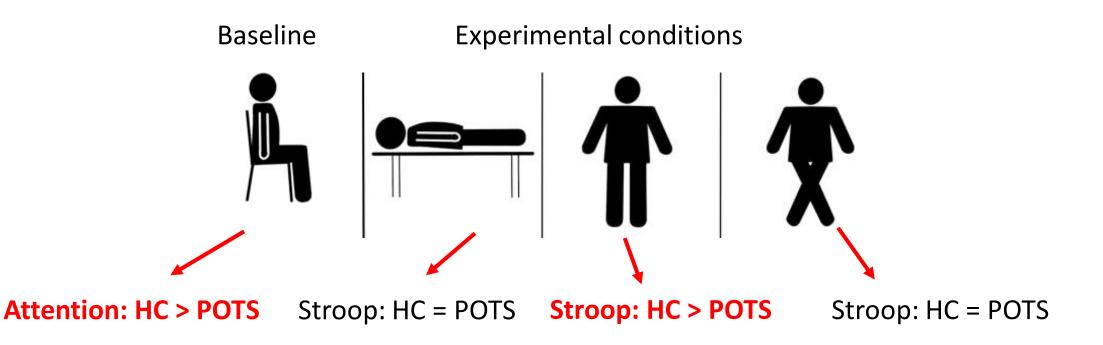
Function connectivity (FC) study of Inderyas et al. (2024) during the Stroop Test:

- Stronger FC between pontine nuclei and left frontal pole/superior frontal gyrus (responsible for higher cognitive processes) – hyper-stimulation due to diminished frontal activity through pontine nuclei.
- Stronger FC between regions of the default mode network (DMN; frontal, parietal, occipital regions, PCC) compensatory mechanism due to impaired cognitive functioning.
- Self-reported memory impairments correlate with multiple subfields of the cerebellum implicated in memory dysfunction.

Spotlight: neurobiological basis (2/2)

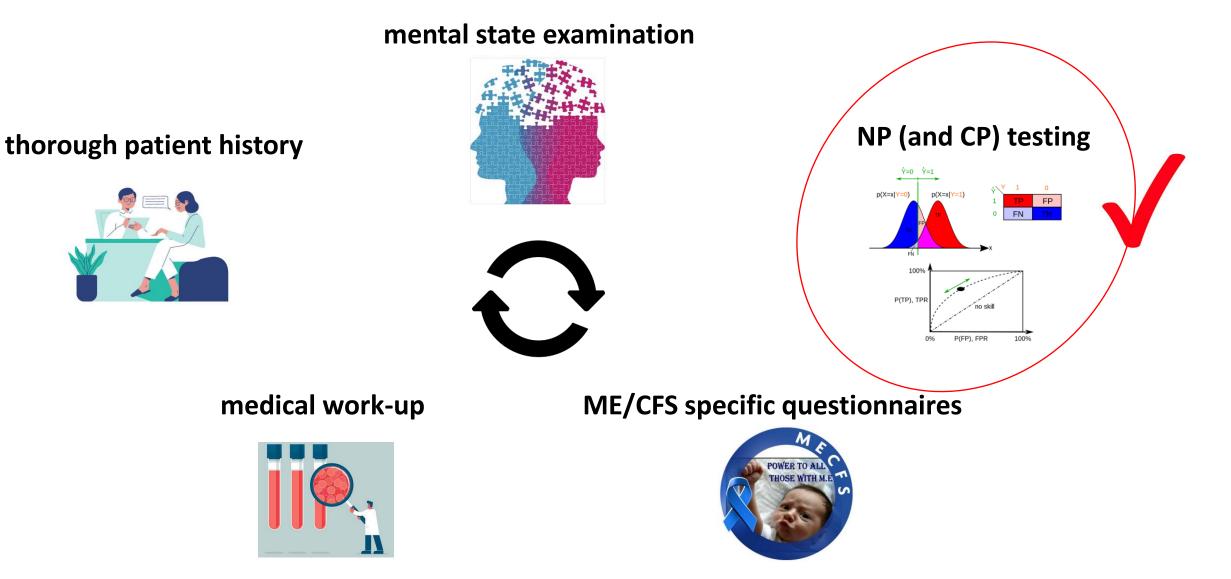
DTI study of Thapaliya et al. (2021), resting state:

- Diffusion deficits in the **frontopontine tract** extending to fibres of the pontine nuclei.
- Correlation of several subcortical regions in self-reported **poor information processing** (e.g., corpus callosum, hippocampus).


MRI studies of Thapaliya et al. (2022a,b):

- Reduced cortical thickness in parts of the frontal lobe (left caudal middle frontal gyrus involved in higher cognitive processes) and parietal lobe (right precuneus – involved in visual imagery, attention, memory retrieval).
- Larger volumes in hippocampal subfields compensatory mechanismus to maintain adequate brainstem-cortico communication.
- Correlation between larger volumes in the **hippocampal region** and **self-reported poor information processing**).

Spotlight: POTS and cognitive functioning


Maier et al. (2023) experimentally induces cognitive impairments by varying the position.

Orthostatic stress in terms of different positions accounts for the observed differences in cognitive functioning in POTS. High comorbidity with ME/CFS!

Best practice for reaching a diagnosis

Thanks for your attention!

. . .

... and you all passed the Stroop Test

References

- Carruthers, B. M., Jain, A. K., De Meirleir, K. L., Peterson, D. L., Klimas, N. G., Lerner, A. M., Bested, A. C., Flor-Henry, P., Joshi, P., Powles, A. C. P., Sherkey, J. A. & van de Sande, M. I. (2003). Myalgic encephalomyelitis/chronic fatigue syndrome. Clinical working case definition, diagnostic and treatment protocols. *Journal* of Chronic Fatigue Syndrome, 11, 7-115.
- Conroy, K. E., Islam, M. F. & Jason, L. A. (2023). Evaluating case diagnostic criteria for myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS): toward an empirical case definition. *Disability and Rehabilitation*, *45*, 840-847.
- Inderyas, M., Thapaliya, K., Marshall-Gradisnik, S., Barth, M. & Barnden, L. (2024). Subcortical and default mode network connectivity is impaired in myalgic encephalomyelitis/chronic fatigue syndrome. *Frontiers in Neuroscience*, *17*, 1318094.
- Institute of Medicine (IOM) (2015). Beyond myalgic encephalomyelitis/chronic fatigue syndrome. Redefining an illness. Report guide for clinicians. Online: https://www.nap.edu/resource/19012/MECFScliniciansguide.pdf
- Lee, J.-S., Sato, W. & Son, C.-G. (2024). Brain-regional characteristics and neuroinflammation in ME/CFS patients from neuroimaging: a systematic review and metaanalysis. *Autoimmmunity Reviews, 23,* 103484.
- Li, X., Julin, P. & Li, T.-Q. (2021). Limbic perfusion is reduced in patients with myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS). Tomography, 7, 675-687.
- Maier, A., Schopen, L., Thiel, J. C., Müller, K., fimm, B. & Schulz, J. B. (2023). Cognitive functioning in postural orthostatic tachycardia syndrome among different body positions: a prospective pilot study (POTSKog study). *Clinical Autonomic Resrach, 33,* 459-468.
- Sebaiti, M. A., Hainselin, M., Gounden, Y., Sirbu, C. A., Sekulic, S., Lorusso, L., Nacul, L. & Authier, F. J. (2022). Systematic review and meta-analysis of cognitive impairment in myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS). *Scientific Reports, 12,* 2157.
- Thapaliya, K., Marshall-Gradisnik, S., Staines, D. & Barnden, L. (2021). Diffusion tensor imaging reveals neuronal microstructural changes in myalgic encephalomyelitis/chronic fatigue syndrome. *European Journal of Neuroscience, 54,* 6214-6228.
- Thapaliya, K., Marshall-Gradisnik, S., Staines, D., Su, J. & Barnden, L. (2022a). Alteration of cortical volume and thickness in myalgic encephalomyelitis/chronic fatigue syndrome. *Frontiers in Neuroscience*, *16*, 848730.
- Thapaliya, K., Staines, D., Marshall-Gradisnik, S., Su, J., Barnden, L. (2022b). Volumetric differences in hippocampal subfields and association with clinical measures in myalgic encephalomyelitis/chronic fatigue syndrome. *Journal of Neuroscience Research, 100,* 1476-1486.